$E_{T, \text { max }} \quad$ maximum absolute deviation for $T,{ }^{\circ} \mathrm{C}$
(5) Şebastiani, E.; Carll, E.; Lacquantil, C. Ann. Chim. (Rome) 1970, 60 , 45-51.
$E_{y_{i, \max }} \quad$ maximum absolute deviation for $y_{i}$
Regletry No. Acetone, 67-64-1; ethyl acetate, 141-78-6; ethanol, 64-17-5.

## Literature Clted

(1) Wilson, J. M. J. Am. Chem. Soc. 1964, 86, 127-30.
(2) Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135-44.
(3) Abrams, D. S.; Prausnitz, J. M. AIChE J. 1075, 21, 116-28.
(4) Fredenslund, A.; Jones, R. L.; Prausnltz, J. M. AIChE J. 1975, 21. 1986-99.
(6) Duffey, H. R. Private communication to T. H. Chilton, 1935, reported in: "Chemical Engineer's Handbook", 3rd ed.; McGraw-Hill: New York, 1950; p 573.
(7) Amer, H. H.; Paxton, R. R.; Van Winkle, M. Ind. Eng. Chem. 1956, 48, 142-6.
(8) Vinichenko, I. G.; Susarev, M. P. Zh. Prlki. Khlm. 1968, 39, 1583-9.
(9) Subrahmanyam, V.; Murty, P. C. J. Appl. Chem. 1964, 14, 500-2.
(10) Murty, P. S.; Van Winkle, M. Chem. Eng. Data Ser. 1956, 3, 72-81.
(11) Gmehiling, J.; Onken, V. "Vapor-Liquld Equllibrium Data Collection"; DECHEMA Chemistry Data Serles: Frankłurt, 1977-78; V. 1/2a.

# New Property Tables of Chlorine In SI Units 

Joseph J. Martin ${ }^{\dagger}$ and D. Michael Longpre"<br>Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109

Selected values of the vapor pressure, spectic volume, enthalpy, entropy, and fugacity for the saturated Hquid and vapor of chlorine, from the triple point (172.17 K) to the critical point ( 416.90 K ), are presented. A vapor pressure equation and a saturated-liquid density equation were used to correlate experimental values from the iterature. The Marth-stanford equation of state was used to predict the properties of chlorine for densties less than 2 times the critical densify. For densitles greater than 2 times the critical density, an equation of state developed by Wagenbreth to correlate his compressed-liquild data for chlorine was used. The Ideal-gas heat capacity was calculated by using statistical thermodynamics. The datum plane for the thermodynamic properities was chosen to be the perfect solld orystal at 0 K . The enthalpy, entropy, fugacity, velocity of sound, Joule-Thomson coefficient, and second virial coefficient were calculated by using classical thermodynamic relationships.

## Introduction

Chlorine is one of the most widely used chemicals, and yet, because it is highly corrosive and if released very dangerous, there is not much experimental data available. Table I and Figure 1 give an overvlew of the experimental data in the literature.

In 1950, Ziegler (1) compiled and correlated the meager experimental data and produced a limited saturation table. In 1957, Kapoor and Martin (2) extrapolated the experimental data to the high temperature-pressure superheat region and then used a computer to produce detalied saturation and superheat tables. In 1981, the Chlorine Institute (3) expanded and updated Kapoor and Martin's work and also added properties in the subcooled region. Unfortunately, the Insttute's development work had been completed before the vapor pressure and critical point data of Ambrose et al. (4) were avallable, and so they were not used. This work, sponsored by the Chlorine Institute, incorporates the results of Ambrose. The differences between the updated properties and those of the 1981 study are small except for conditions close to the critical point.

[^0]Table I. Experimental Data on Chlorine from the Literature

| year | investigator | type of measurement |
| :---: | :---: | :---: |
| 1900 | Knietsch (8) | saturated-liquid density and vapor pressure measurements |
| 1900 | Lange (7) | saturated-liquid density and vapor pressure measurements |
| 1908 | Pier(11) | low-pressure PVT measurements |
| 1913 | Jacquerod and Tourpaian (12) | low-pressure PVT measurements |
| 1915 | Pellaton (5) | vapor pressure, saturated-vapor and liquid density measurements |
| 1939 | Giauque and Powell (6) | the triple point, vapor pressure, heat capacities of solid and liquid, and normal heats of fusion and vaporization |
| 1940 | Ross and Maass (10) | low-pressure PVT measurements |
| 1968 | Wagenbreth (13) | compressed-liq PVT measurements |
| 1979 | Ambrose et al. (4) | vapor pressure measurements |

Table II. Physical Constants and Conversion Factors

|  | physical constants |  |  |  |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
| ref | $T_{\mathrm{c}}, \mathrm{K}$ | $P_{\mathrm{c}}, \mathrm{kPa}$ | $\rho_{\mathrm{c}}, \mathrm{kg} / \mathrm{m}^{3}$ | $\mathrm{bp}, \mathrm{K}$ | triple <br> point, K |
| this work | 416.90 | 7977 | 573 | 239.18 | 172.17 |
| 5 | 417.15 | 7710.83 | 573 | 238.65 |  |
| 4 | 416.90 | 7977 |  | 239.184 |  |
| 8 | 419.15 | 9474 | 239.55 |  |  |
| 6 | conversion factors |  |  |  |  |
|  |  |  |  |  |  |

$1 \mathrm{~atm}=101.325 \mathrm{kPa}$ (exact value)
$1 \mathrm{cal}=4.1840 \mathrm{~J}$ (exact value)
$1 \mathrm{kPa} \mathrm{m} 3 / \mathrm{kg}=1 \mathrm{~kJ} / \mathrm{kg}$ (exact value)
$1 \mathrm{cal} /(\mathrm{g} \cdot \mathrm{mol} \cdot \mathrm{K})=5.900770034 \times 10^{-2} \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K})$ (for chlorine)
molecular weight of $\mathrm{Cl}_{2}=70.906$ (based on carbon-12 with
atomic weight $=12$ )
$R=8.3144 \mathrm{~J} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$
$R=8.3144 \mathrm{~Pa} \mathrm{~m}^{3} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$
$R=0.11725947 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K})$
$R=82.057$ atm cm ${ }^{3} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$
$R=1.98719 \mathrm{cal} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$ (thermo calorie)
Complete tables and plots may be purchased from the Chlorine Institute when published.


Figure 1. Scope of the literature data for chlorine: ( --- ) reglon encompassed by thls work; ( $-\times-$ ) region encompassed by Wagenbreth (13); (---) reglon encompassed by Ross and Maess (10); (-) vapor pressure data: Pellaton (5), Glauque and Powell (6), Ambrose et al. (4); (一) saturated-Hquld density data: Knletsch (8), Lange (7), Peltaton (5); (O) Pler (11); (*) Jacquerod and Tourpaian (12).

## Physical Constants and Conversion Factors

The physical constants and conversion factors used in this paper are listed in Table II. The critical temperature and pressure of Ambrose et al. (4) were used directly. The critical volume and density were taken from Pellaton's (5) work.

## Vapor Pressure

The vapor pressure data of Ambrose et al. (4), from 205.945 to 416.90 K , and Giauque and Powell (6), from 172.17 to 240.10 K, were used to determine the constants in the Mar-tin-Shin-Kapoor vapor pressure equation (eq 1)
$\ln P=A+\frac{B}{T}+C \ln T+D T+\frac{E(F-T) \ln (F-T)}{F T}$
where $P$ is in kilopascals and $T$ is in kelvin. The values of the constants are listed in Table III. The equation had three constraints placed on it. The normal boilling point was set at $T_{\text {nop }}=239.18 \mathrm{~K}$, the critical point was set as $P_{c}=7977 \mathrm{kPa}$ at $T_{c}=416.90 \mathrm{~K}$, and $M=6.30$ where $M=\mathrm{d} P_{\mathrm{r}} / \mathrm{d} T_{\mathrm{r}}$ at the critical point. The average deviation between the predicted vapor pressure and the experimental values is $0.20 \%$ with a standard deviation of $0.29 \%$. The vapor pressure work of Pellaton (5) was not used in determining the equation constants. His vapor pressures averaged $2.7 \%$ lower than those predicted by using eq 1 .

## Saturated-Llquid Density Equation

The saturated-liquid data of Lange (7) and Pellaton (5) were fitted to the following equation:

$$
\begin{array}{r}
\rho^{\prime}=a_{0}+a_{1}\left(1-T_{r}\right)^{1 / 3}+a_{2}\left(1-T_{r}\right)^{2 / 3}+a_{3}\left(1-T_{r}\right)+ \\
a_{4}\left(1-T_{r}\right)^{4 / 3} \tag{2}
\end{array}
$$

where $p^{\prime}$ is in $\mathrm{g} / \mathrm{cm}^{3}$. The constants for eq 2 are listed in Table III. The average devlation between the predicted and experimental values was $0.098 \%$. The standard deviation was

## Table III. Equation Constants and Units

| Vapor Pressure Equation Constants (Eq 1) |  |
| :--- | :--- |
| $P=$ pressure, $\mathrm{kPa} ; T=$ temperature, K |  |
| $A=62.402508$ | $D=1.0666308 \times 10^{-2}$ |
| $B=-4343.5240$ | $E=95.248723$ |
| $C=-7.8661534$ | $F=424.90$ |
|  | Saturated-Liquid Density Equation Constants (Eq 2) |
| $\rho^{1}=$ density, g/cm | $T=$ temperature, K |
| $a_{0}=\rho_{\mathrm{c}}=0.573$ |  |
| $\mathrm{~g} / \mathrm{cm}^{3}$ |  |
| $a_{1}=1.0606083$ | $a_{3}=0.83708192$ |
| $a_{2}=-0.16041800$ | $a_{4}=-0.24720716$ |

PVT Relation Parameters and Constants (Eq 3)
$R=$ gas constant $=8.3144 \mathrm{~J} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$ or $\mathrm{Pa} \cdot \mathrm{m}^{3} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$ Parameters
$T_{\mathrm{B}}=1042.25 \mathrm{~K} \quad S_{1.5 \mathrm{v}_{\mathrm{c}}}=0.55 \mathrm{M}$
$M=6.55$
$S_{1.4 \rho_{c}}=1.83 \mathrm{M}$
$B_{0.8}=-0.655$
$S_{3.4 \rho_{\mathrm{c}}}=3.4 \mathrm{M}$
$k=5.0$
$Z_{\mathrm{c}}=0.284777$
Constants
$A_{2}=-0.531700767 \quad B_{2}=0.177907999$
$A_{3}=6.33375300 \times \quad B_{3}=-8.75699822 \times 10^{-3}$
$10^{-2}$
$A_{4}=-4.28235260 \times B_{4}=1.03051770 \times 10^{-3}$
$10^{-3}$
$A_{5}=-5.02954607 \times B_{5}=6.91027428 \times 10^{4}$
$10^{4}$
$A_{6}=1.77703549 \times \quad B_{6}=-1.66349849 \times 10^{8}$
$10^{6}$
$C_{2}=-3.14743220 \quad t P_{\mathrm{c}} /\left(R T_{c} Z_{\mathrm{c}}\right)=0.122120115$
$C_{3}=1.17535330 \quad c=2.9280357 \times 10^{-6}$
$C_{4}=-9.71238126 \times m=1.39393939$
$10^{-2}$
$a=16.5 \quad n=8.53946931 \times 10^{-2}$
Wagenbreth PVT Relation Constants (Eq 4)

| $W_{1}=2.44499$ | $W_{4}=0.10051$ |
| :--- | :--- |
| $W_{2}=-3.32748$ | $W_{5}=2.28208$ |
| $W_{3}=-0.39755$ | $W_{6}=0.60677$ |

Ideal-Gas Heat Capacity Equation Constants (Eq 5)
$T=$ temperature,$\quad C_{p}{ }^{*}=$ ideal-gas heat capacity, cal/(g-mol-K) K
$\alpha=10.265952 \quad \gamma=-709.60655$
$\beta=-7.8085907 \times \quad \delta=40821.249$
$10^{-4}$
found to be $0.13 \%$. The data of Knietsch (8) was inconsistent with those of Lange and Pellaton and was not used.

## PVT Behavior of the Gas and Liquid Phases

The PVT behavior of the gas for densities less than 2 times the critical density were predicted by the Martin-Stanford equation (eq 3). The constants in eq 3 were determined by

$$
\begin{align*}
& P_{r}= \frac{T_{r}}{Z_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\frac{A_{2}+B_{2} T_{r}+C_{2} \theta^{-k T_{r}}}{Z_{c}{ }^{2}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}+ \\
& \frac{A_{3}+B_{3} T_{r}+C_{3} \theta^{-k T_{r}}}{Z_{c}{ }^{3}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{3}}+\frac{A_{4}+B_{4} T_{r}+C_{4} \theta^{-k T_{r}}}{Z_{c}^{4}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{4}}+ \\
& \frac{A_{6}+B_{5} T_{r}}{\theta^{a V}\left(1+c \theta^{\left.a V_{r}\right)}\right.}+\frac{A_{6}+B_{6} T_{r}}{\theta^{m a V_{r}\left(1+n c e^{m a V_{r}}\right)}} \tag{3}
\end{align*}
$$

the method described in ref 9 . The values of the required parameters used in the development, and the constants that resulted, are listed in Table III. The densities predicted by using eq 3 were compared with three low-pressure data sets. Ross amd Maass (10) made 40 density measurements from 288.15 to 348.15 K . The average deviation between the predicted and experimental densitles was found to be $0.074 \%$ with


Figure 2. Technique used to calcutate the compressed-Hiquid properties from the critical to twice the critical density.
a standard deviation of $0.093 \%$ (one inconsistent data point was excluded). Pler (11) made 16 density measurements between 273.15 and 457.65 K . These had an average deviation from the predicted values of $0.096 \%$ and a standard deviation of $0.12 \%$. Lastly, Jacquerod and Tourpalan (12) made measurements at 273.15 and 288.15 K which differed from the predicted density by $-0.0090 \%$ and $0.062 \%$, respectively.

Along the saturated-liquid curve, eq 3 may not give the true volume as predicted by the saturated-Hquid density equation (eq 2). However, the behavior of eq 3 in this subcooled region near the saturation dome is still considered to be correct. So, to predict the PVT properties in the compressed-liquld region where $T<T_{c}$ and $\rho \leq 2.0 \rho_{0}$, the following technique was used. For a specific $P_{\text {sat }}$ and $T_{\text {sat }}$, the quantlty $\Delta V$ was calculated from

$$
\Delta \mathbf{V}=\mathbf{V}^{e q}{ }^{2}-V_{\operatorname{eat}}^{e q}
$$

(see Figure 2). Then, the true specific volume at a higher pressure, $P_{2}$, aiong the isotherm is

$$
V_{2}^{\text {true }}=V_{2}^{\text {eq } 3}+\Delta V
$$

This method was also used in the calculations of enthalpy and entropy.

Wagenbreth (13) used his own compressed-llquid data to develop an equation of state for the region from 273.15 to 417.15 K between the vapor pressure and 16000 kPa . His equation was used, in reduced form with the critical constants selected in this paper, for densities from 2.0 to 2.7 times the critical density.

$$
\begin{equation*}
\left.P_{r}=W_{1}+W_{2} \rho_{r}^{3}+W_{3} \rho_{r}^{4}+W_{4} \rho_{r}^{6}+\rho_{r}^{3} T_{d} W_{5}+W_{6} \rho_{r}\right) \tag{4}
\end{equation*}
$$

The constants in this equation are listed in Table III.
As was true for eq 3, Wagenbreth's equation may not predict the same saturated-liquid density as eq 2. Therefore, the following technique, which is similar to that used with eq 3, was empioyed. For a specific $P_{\text {sat }}$ and $T_{\text {sat }}, V^{e q} 2$ and $V_{\text {sat }}^{\text {eq }}$ were calculated. Then, for another pressure, $P_{2}$, along the isotherm, the quantity $\Delta V$ was calculated where

$$
\Delta V=V_{2}^{e q 4}-V_{s a t}^{e q} 4
$$

(see Figure 3). Then, the true specific volume is

$$
V_{2}^{\text {true }}=V^{e q} 2+\Delta V
$$

This assumes that $\Delta V=V_{2}^{e q}{ }^{4}-V_{\text {Bat }}^{e q}=V_{2}^{\text {true }}-V^{e q}{ }^{2}$ along the isotherms.


Figure 3. Tectnnique used to calculate the compressed-Hiquid properties from 2.0 to 2.7 times the critical density.

Although both eq 3 and 4 accurately predict the com-pressed-liquid PVT behavior in the region of 2.0 times the critical density, they do not agree exactly. For temperatures greater than 403 K , eq 3 is used to predlct the compressed-liquid properties. For temperatures less than 373 K , the properties are predicted by using eq 4. For isotherms in the transition region (373-403 K), both equations were used In predicting the properties. The maximum difference between the densities predicted by the two equations in the transition region was found to be less than $1 \%$.

## Ideal-Cas Heat Capacity

The molecular vibrational assignments of Douglas, Møller, and Stoicheff (14), based on a general internal model for diatomic gases, were used for a statistical thermodynamic calculation of the heat capacity of the ideal gas. The following empirical equation was then developed to represent the calculated data from 180 to 600 K :

$$
\begin{equation*}
C_{p}^{*}=\alpha+\beta T+\gamma / T+\delta / T^{2} \tag{5}
\end{equation*}
$$

where $C_{p}$ e is in cal/(g-mol.K) and $T$ is in kelvin. The heat capacities calculated from this equation were compared to those calculated by Gushko et al. (15) and showed a maximum deviation of $0.022 \%$. The constants used in this equation are listed in Table III.

## Datum Plane for Thermodynamic Propertles

The datum plane for the thermodynamic properties of enthalpy and entropy was the crystalline solid at absolute zero. Thus, at $0 \mathrm{~K}, \mathrm{H}=0$ and $\mathbf{S}=0$.

The enthalpy of the saturated vapor at atmospheric pressure $(525.7212 \mathrm{~kJ} / \mathrm{kg}$ ) was determined by using the heat capacity data of Glauque and Powell (6) for the solid and liquid with the latent heat of vaporization as determined from the Clapeyron equation. This enthalpy, $H_{r e f}$, was used as the reference for all other calculations. To facilitate comparison with other tables, the enthalpy of the ideal gas at 298.15 K was calculated as $555.4796 \mathrm{~kJ} / \mathrm{kg}$.

Using the fundamental vibrational properties of the molecule, Glushko et al. (15) calculated the entropy of the ideal gas at 298.15 K and 1 atm to be $222.965 \mathrm{~J} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$ (3.144515 $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K}))$. The entropy of the real saturated vapor at 239.18 $K$ and 1 atm was then calculated by using the ideal-gas heat capacity (eq 5) with the PVT relation (eq 3) and found to be $3.035173 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K})$. This value was used as the reference for all other calculations.

Table IV. Saturation Properties of Chlorine


The latent heat of vaporization was calculated from the Clapeyron equation by utillzing the vapor pressure, llquid density, and PVT relations. The heat of vaporization is

$$
\begin{equation*}
\Delta \mathbf{H}_{\text {vap }}=T\left(\mathbf{V}^{\mathrm{g}}-\mathrm{V}^{\dagger}\right)(\mathrm{d} P / \mathrm{d} T)_{\mathrm{sat}} \tag{6}
\end{equation*}
$$

where $(d P / d T)_{\text {sat }}$ is the slope of the vapor pressure curve. The calculated heat of vaporization at the new boiling point ( 288.084 $\mathrm{kJ} / \mathrm{kg}$ at 239.18 K ) compares favorably with Glauque and Powell's experimental value (6) of $\mathbf{2 8 7 . 7 5 2 \mathrm { kJ } / \mathrm { kg } \text { measured at }}$ their normal boiling point of 239.10 K .

## Entropy of Vaporization

The entropy of vaporization was found from the relation

$$
\Delta S_{\text {vap }}=\Delta H_{\text {vap }} / T
$$

## Heat Capacity of the Saturated Liquid

Glauque and Powell (6) measured the saturated-liquid heat capaclty, $C_{s}{ }^{\prime}$, at 11 temperatures, from 173.17 to 239.10 K . These were used to check the thermodynamic consistency of the varlous equations used in this report. The procedure consisted of calculating $C_{8}$ ' by using classical thermodynamic relationships along with the vapor pressure, PVT (eq 3), satu-rated-liquid density, and ideal-gas heat capacity equations and then comparing the calculated value with the experimental values. The calculated saturated-liquid heat capacities averaged $3.16 \%$ less than the experimental values with the differences ranging from $1.39 \%$ to $3.90 \%$. The agreement is considered acceptable since the values depend on the second derivatives of some of the relations.

## Enthalpy of the Vapor

The property relation for enthalpy is

$$
\mathrm{dH}=C_{p} \mathrm{~d} T+\left[\mathbf{V}-T(\partial V / \partial T)_{p}\right] \mathrm{d} P
$$

Then, after some manipulation and utilization of the ideal-gas heat capaclty and PVT relations (eq 5 and 3), the enthalpy is given by

$$
\begin{aligned}
& \mathbf{H}=\mathbf{H}_{\text {ret }}+\left\lvert\,(\alpha-R) T+\frac{\beta T^{2}}{2}+\gamma \ln T-\frac{\delta}{T}+P \mathrm{~V}+\right. \\
& P_{c} \mathbf{V}_{c}\left[\frac{A_{2}+\left(1+k T_{r}\right) C_{2} \theta^{-k T_{r}}}{Z_{c}{ }^{2}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\right. \\
& A_{3}+\left(1+k T_{r}\right) C_{3} e^{-k T} \\
& 2 Z_{c}{ }^{3}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}+ \\
& \frac{\left.A_{4}+\left(1+k T_{r}\right) C_{4} \theta^{-k T_{r}}\right)}{3 Z_{c}{ }^{4}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{3}}+ \\
& A_{5}\left[c V_{r}+\frac{1}{a e^{a V_{r}}}-\frac{c}{a} \ln \left(1+c \theta^{a V_{r}}\right)\right]+ \\
& \left.A_{B}\left[n c V_{r}+\frac{1}{m a e^{m a V_{r}}}-\frac{n c}{m a} \ln \left(1+n c e^{\left.m a V_{r}\right)}\right]\right]\right]_{\left(T, P, V_{m a}\right.}^{r, P, V}
\end{aligned}
$$

where H is in $\mathrm{kJ} / \mathrm{kg}$.
The enthalpy of the saturated vapor is found by substituting $T_{\text {sat }}, P_{\text {sat }}$, and $\mathbf{V}_{\text {sat }}$ into the above equation.

## Enthalpy of the Saturated Llquid

The enthalpy of the saturated liquild, $\mathbf{H}_{\text {saty }}^{\prime}$ was found by subtracting the heat of vaporization from the enthalpy of the saturated vapor.

## Enthalpy of the Compressed Liquild

Changes in the llquid enthalpy can be found from the following property relation:

$$
d \mathbf{H}^{\mathrm{t}}=\left[T(\partial P / \partial T)_{V}+\mathbf{V}(\partial P / \partial \mathbf{V})_{T}\right] \mathrm{d} \mathbf{V}
$$

Using the liquid PVT relation (eq 4) to evaluate the partial derivatives, then Integrating between state 1 and state 2 at constant temperature where state 1 is the saturated liquid, one obtains the enthalpy:

$$
\begin{aligned}
& \mathbf{H}^{\prime}= \\
& H_{\text {sat }}^{\prime}+V_{c} P_{c}\left(\frac{W_{5}}{V_{r}^{2}}+\frac{W_{8}}{V_{r}^{3}}\right) T_{r}+\frac{4 W_{3}}{3 V_{r}^{3}}+\frac{6 W_{4}}{5 V_{r}^{5}}+\left.\frac{3 W_{2}}{2 V_{r}^{2}}\right|_{\left(V_{r}\right)} ^{V_{r}}
\end{aligned}
$$

## Eniropy of the Vapor

Starting with the property relation

$$
\mathrm{dS}=C_{v} \frac{\mathrm{~d} T}{T}-\left(\frac{\partial P}{\partial T}\right)_{V} \mathrm{dV}
$$

and then manipulating it and utillzing the deeal-gas heat capacity and PVT relations (eq 5 and 3), one obtains the entropy:

$$
\begin{aligned}
& \mathbf{S}=\mathbf{S}_{\text {ret }}+\left\lvert\,(\alpha-R) \ln T+\beta T-\frac{\gamma}{T}-\frac{\delta}{2 T^{2}}+\right. \\
& \frac{P_{\mathrm{c}} V_{c}}{T_{\mathrm{c}}}\left[\frac{\ln \left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{\mathrm{c}} Z_{c}}\right)}{Z_{\mathrm{c}}}-\frac{B_{2}}{Z_{\mathrm{c}}{ }^{2}\left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{\mathrm{c}} Z_{c}}\right)}-\right. \\
& \frac{B_{3}}{2 Z_{c}{ }^{3}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}-\frac{B_{4}}{3 Z_{c}{ }^{4}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{3}}- \\
& B_{5}\left[c V_{r}+\frac{1}{a \theta^{a V_{r}}}-\frac{c}{a} \ln \left(1+c \theta^{a V_{r}}\right)\right]- \\
& B_{6}\left[n c V_{r}+\frac{1}{m a e^{m a V_{r}}}-\frac{n c}{m a} \ln \left(1+n c e^{m a V_{r}}\right)\right]+ \\
& {\left[\frac{C_{2}}{Z_{\mathrm{c}}{ }^{2}\left(V_{r}-\frac{t P_{\mathrm{c}}}{R T_{\mathrm{c}} Z_{\mathrm{c}}}\right)}+\frac{C_{3}}{2 Z_{\mathrm{c}}{ }^{3}\left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{\mathrm{c}} Z_{\mathrm{c}}}\right)^{2}}+\right.}
\end{aligned}
$$

where $\mathbf{S}$ is in $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$.
The entropy of the saturated vapor is found by substltuting $T_{\text {sat }}, P_{\text {sat }}$, and $\mathbf{V}_{\text {sat }}$ into the above equation.

## Entropy of the Saturated Llquid

The entropy of the saturated ilquid, $\mathbf{s}_{\text {aat }}^{1}$, is found by subtracting the entropy of vaporization from the entropy of the saturated vapor.

## Entropy of the Compreseed Liquld

Changes in the entropy can be found from the property relation

$$
\mathrm{dS}=C_{v} \frac{\mathrm{~d} T}{T}+\left(\frac{\partial P}{\partial T}\right)_{v} \mathrm{~d} \mathrm{~V}
$$

Using the liquid PVT relation (eq 4) to evaluate the partlal derlvatives, and then integrating between state 1 and state 2 at constant temperature where state 1 is the saturated liquid, one obtains the entropy:

$$
\boldsymbol{S}^{\prime}=\mathbf{S}_{\text {aat }}^{\prime}-\left.\frac{\mathbf{V}_{\mathrm{c}} P_{\mathrm{c}}}{T_{\mathrm{c}}}\right|_{2 V_{\mathrm{r}}^{2}} ^{2 W_{\mathrm{r}}^{2}}+\left.\frac{W_{B}}{3 V_{r}^{3}}\right|_{V_{r}^{\prime}} ^{V_{\mathrm{t}}}
$$

## Fugacity

Fugacity, $f$, is defined by the equation

$$
d \mathbf{G}=R T d(\ln f)
$$

At constant temperature, for a fixed mass of a single substance

$$
\mathrm{V} \mathrm{~d} P=R T \mathrm{~d}(\ln f)
$$

After some manipulation

$$
f=\exp \left[\ln \left(\frac{R T}{V}\right)+\int_{\mathbf{v}}\left[\frac{1}{V}+\frac{v}{R T}\left(\frac{\partial P}{\partial V}\right)_{T}\right] d V\right]
$$

Substituting in the PVT relation for $\mathbf{V} \geq \mathbf{V}_{\mathrm{c}}$ (eq 3 with the fitth and sixth terms truncated), one gets

$$
\begin{aligned}
& f=\frac{R T}{V_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)} \exp \left[\left(\frac{\frac{t P_{c}}{R T_{\mathrm{c}} Z_{c}}}{\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}\right)+\right. \\
& \frac{2\left(A_{2}+B_{2} T_{r}+C_{2} e^{-k T_{r}}\right)}{Z_{c} T_{r}}\left[\frac{1}{\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\right. \\
& \left.\frac{\frac{t P_{c}}{R T_{c} Z_{c}}}{2\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}\right]+ \\
& \frac{3\left(A_{3}+B_{3} T_{r}+C_{3} e^{-k T_{r}}\right)}{Z_{c}^{2} T_{r}}\left[\frac{1}{2\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}+\right. \\
& \left.\frac{\frac{t P_{\mathrm{c}}}{R T_{\mathrm{c}} Z_{\mathrm{c}}}}{3\left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{c} Z_{c}}\right)^{3}}\right]+ \\
& \frac{4\left(A_{4}+B_{4} T_{r}+C_{4} e^{-k T_{r}}\right)}{Z_{c}{ }^{3} T_{r}}\left[\frac{1}{3\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{3}}+\right. \\
& \left.\left.\frac{\frac{t P_{c}}{R T_{c} Z_{c}}}{4\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{4}}\right]\right]
\end{aligned}
$$

where $f$ is in kilopascals.

## Velocity of Sound

The velocity of sound is given by

$$
U_{\mathrm{a}}=\left[(\partial P / \partial \rho)_{S}\right]^{1 / 2}=\left[-\left(C_{p} / C_{v}\right) \mathbf{V}^{2}(\partial P / \partial \mathrm{V})_{T}\right]^{1 / 2}
$$

To evaluate this quantity, the constant-volume heat capacity is needed, which is given by

$$
d C_{V}=T\left(\partial^{2} P / \partial T^{2}\right)_{V} d V
$$

Integrating from $V=\infty$, where the gas behaves ideally and $C_{v}$ $=C_{v}{ }^{*}$, to a finite volume, V

$$
C_{v}=C_{v}+\int_{\infty}^{v} T\left(\partial^{2} P / \partial T^{2}\right)_{v} d V
$$

The second derivative of the PVT relation (eq 3) was used in evaluating this equation to give

$$
\begin{aligned}
C_{v}=C_{v} \cdot- & \frac{T_{r} P_{c} V_{c} k^{2}}{T_{c}} e^{-k T_{r}}\left[\frac{C_{2}}{Z_{c}^{2}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\right. \\
& \left.\frac{C_{3}}{2 Z_{c}^{3}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}+\frac{C_{4}}{3 Z_{c}^{4}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{3}}\right]
\end{aligned}
$$

where $C_{v}$ is in $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$.
The constant-pressure heat capacity was then found from

$$
C_{p}=C_{v}-T(\partial P / \partial T)_{V}^{2} /(\partial P / \partial V)_{T}
$$

The temperature and volume derivatives of eq 3 were used to evaluate this, which gives

$$
\begin{aligned}
& C_{p}=C_{v}+\frac{T_{r} P_{c} V_{c}}{T_{c}}\left[\frac{1}{Z_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\right. \\
& \frac{B_{2}-C_{2} k \theta^{-k T_{r}}}{Z_{c}{ }^{3}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}+\ldots+ \\
& \frac{B_{\theta}}{\left.\epsilon^{m a V_{r}\left(1+n c e^{m a V_{r}}\right)}\right]^{2}} \frac{T_{r}}{Z_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}+ \\
& \frac{2\left(A_{2}+B_{2} T_{r}+C_{2} \Theta^{-k T_{r}}\right)}{Z_{c}^{2}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{3}}+\ldots+ \\
& \frac{m a\left(A_{\theta}+B_{6} T_{r}\right)\left(1+2 n c e^{m a V_{r}}\right)}{e^{m a V_{r}}\left(1+n c e^{m a V_{r}}\right)^{2}}
\end{aligned}
$$

where $C_{p}$ is in $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$.
Then, after eq 3 is used to evaluate $(\partial P / \partial V)_{T}$, the velocity of sound in the vapor is given by

$$
\begin{align*}
U_{\mathrm{a}}=\mathrm{V}\left[\begin{array}{l}
\frac{C_{p}}{C_{v}} \frac{P_{\mathrm{c}}}{V_{\mathrm{c}}}\left[\frac{T_{\mathrm{r}}}{Z_{\mathrm{c}}\left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{\mathrm{c}} Z_{\mathrm{c}}}\right)^{2}}+\right. \\
\\
\\
\\
\\
\\
\\
\\
\\
\frac{2\left(A_{2}+B_{2} T_{\mathrm{c}}+C_{2} e^{-k T_{r}}\right)}{Z^{2}\left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{c} Z_{c}}\right)^{3}}+\ldots+ \\
\theta^{m a V_{r}\left(1+n c \epsilon^{m a} V_{r}\right)^{2}}
\end{array}\right]
\end{align*}
$$

where $U_{a}$ is in $\mathrm{m} / \mathrm{s}$.

## Joule-Thomson Coefficient

The Joule-Thomson coefficient is defined as

$$
\mu=(\partial T / \partial P)_{H}
$$

After manipulation, this becomes

$$
\mu=\left[T\left[-(\partial P / \partial T)_{V} /(\partial P / \partial \mathbf{V})_{r}\right]-\mathbf{V}\right] / C_{p}
$$

When one uses the PVT relation (eq 3) to evaluate $(\partial P / \partial T)_{v}$ and $(\partial P / \partial V)_{T}$, the Joule-Thomson coefficient is given as

$$
\begin{aligned}
& \mu=\left\lvert\,\left[-T_{\mathrm{r}} V_{\mathrm{c}}\left[1+\frac{B_{2}-C_{2} k e^{-k T_{r}}}{Z_{\mathrm{c}}\left(V_{\mathrm{r}}-\frac{t P_{\mathrm{c}}}{R T_{c} Z_{c}}\right)}+\ldots\right.\right.\right. \\
& \left.+\frac{B_{8} Z_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}{e^{m a V_{r}\left(1+n c e^{m a} V_{r}\right)}}\right] /\left[\frac{T_{r}}{\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\right. \\
& \frac{2\left(A_{2}+B_{2} T_{r}+C_{2} \theta^{-k T_{r}}\right)}{Z_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}+\ldots+
\end{aligned}
$$

$$
\begin{aligned}
& v \mid / c_{p}
\end{aligned}
$$

where $\mu$ is in $K / k P a$.

## Second Virial Coefficient

At low pressure the PVT behavior can be described by a truncated version of eq 3

$$
P_{r}=\frac{T_{r}}{Z_{c}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)}+\frac{A_{2}+B_{2} T_{r}+C_{2} e^{-k T_{r}}}{Z_{c}^{2}\left(V_{r}-\frac{t P_{c}}{R T_{c} Z_{c}}\right)^{2}}
$$

Martin (16) showed that at low pressure the second virial coefficient, $B$, is given by

$$
B=\left(R T / P_{c}\right)\left(\partial Z / \partial P_{r}\right)_{T}
$$

Substituting in the truncated $P V T$ relation, then letting $P_{r} \rightarrow 0$, one obtains

$$
B=\frac{R T_{c}}{P_{c}}\left[\frac{t P_{c}}{R T_{c}}+\frac{A_{2}+B_{2} T_{r}+C_{2} e^{-k T_{r}}}{T_{r}}\right]
$$

Table V. Thermodynamic Properties of Chlorine

| $P, \mathrm{kPa}$ | $\mathrm{V}, \mathrm{m}^{3} / \mathrm{kg}$ | H, kJ/kg | $\mathbf{S , k J} / \mathbf{( k g} \cdot \mathrm{K})$ | $f, \mathrm{kPa}$ | $u_{a}, \mathrm{~m} / \mathrm{s}$ | J-T coeff, K/kPa | $\begin{gathered} \text { sec. virial } \\ \text { coeff, } \mathrm{m}^{3} / \mathrm{kg} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature $=0{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | c | 543.59 | c | 0 | d | 0 | -0.004 7821 |
| 101.325 | 0.31126 | 542.10 | 3.0992 | 99.794 | 204.53 | 0.030792 | e |
| (368.92) ${ }^{\text {a }}$ | 0.081793 | 537.95 | 2.9373 | 348.67 | d | d | $e$ |
| $(368.92)^{\text {b }}$ | 0.000682 | 269.43 | 1.9543 | 348.67 | $d$ | d | $e$ |
| 500 | 0.000682 | 269.48 | 1.9541 | d | d | d | $e$ |
| 1000 | 0.000681 | 269.63 | 1.9534 | d | $d$ | $d$ | $e$ |
| 10000 | 0.000672 | 272.57 | 1.9419 | $d$ | $d$ | $d$ | $e$ |
| 20000 | 0.000663 | 276.05 | 1.9303 | $d$ | $d$ | $d$ | $e$ |
| Temperature $=50^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | c | 567.52 | c | 0 | $d$ | 0 | $-0.0034165$ |
| 101.325 | 0.37053 | 566.48 | 3.1812 | 100.40 | 222.34 | 0.020965 | $e$ |
| 500 | 0.072236 | 562.24 | 2.9852 | 477.55 | 217.13 | 0.021148 | $e$ |
| 1000 | 0.034184 | 556.46 | 2.8916 | 910.48 | 209.95 | 0.021481 | $e$ |
| (1455.1) ${ }^{\text {a }}$ | 0.022154 | 550.60 | 2.8348 | 1265.8 | $d$ | d | $e$ |
| $(1455.1)^{\text {b }}$ | 0.000762 | 319.15 | 2.1186 | 1265.8 | $d$ | $d$ | $e$ |
| 5000 | 0.000753 | 319.54 | 2.1115 | $d$ | $d$ | $d$ | $e$ |
| 10000 | 0.000743 | 320.32 | 2.1023 | $d$ | $d$ | d | $e$ |
| 20000 | 0.000726 | 322.46 | 2.0862 | $d$ | $d$ | d | $e$ |
| Temperature $=10{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | $c$ | 591.98 | c | 0 | $d$ | 0 | $-0.0025825$ |
| 101.325 | 0.42924 | 591.21 | 3.2523 | 100.72 | 238.67 | 0.015352 | $e$ |
| 500 | 0.84869 | 588.10 | 3.0596 | 485.30 | 235.11 | 0.015460 | $e$ |
| 1000 | 0.041048 | 584.01 | 2.9709 | 941.39 | 230.42 | 0.015618 | $e$ |
| (3952.0) ${ }^{\text {a }}$ | 0.0076853 | 551.57 | 2.7465 | 3041.6 | d | $d$ | $e$ |
| $(3952.0)^{\text {b }}$ | 0.000898 | 376.62 | 2.2776 | 3041.6 | d | d | $e$ |
| 5000 | 0.000889 | 375.91 | 2.2732 | d | d | d | $e$ |
| 10000 | 0.000857 | 373.85 | 2.2560 | d | $d$ | d | $e$ |
| 20000 | 0.000816 | 372.86 | 2.2309 | $d$ | $d$ | $d$ | $e$ |
| Temperature $=150{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | $c$ | 616.85 | c | 0 | d | 0 | -0.002025 7 |
| 101.325 | 0.48766 | 616.24 | 3.3152 | 100.91 | 253.90 | 0.011913 | $e$ |
| 500 | 0.097183 | 613.82 | 3.1243 | 489.83 | 251.38 | 0.011976 | $e$ |
| 1000 | 0.047534 | 610.69 | 3.0380 | 959.44 | 248.13 | 0.012061 | $e$ |
| 5000 | 0.007490 | 579.66 | 2.7971 | 4005.2 | 217.99 | 0.012922 | $e$ |
| 10000 | 0.001219 | 453.84 | 2.4556 | d | 294.14 | 0.003153 | $e$ |
| 20000 | 0.000964 | 430.17 | 2.3749 | $d$ | 505.08 | 0.000669 | $e$ |
| Temperature $=200^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | c | 642.03 | c | 0 | $d$ | 0 | $-0.0016260$ |
| 101.325 | 0.54593 | 641.53 | 3.3717 | 101.02 | 268.25 | 0.009661 | e |
| 500 | 0.10932 | 639.56 | 3.1818 | 492.70 | 266.43 | 0.009696 | $e$ |
| 1000 | 0.053828 | 637.03 | 3.0969 | 970.88 | 264.13 | 0.009740 | $e$ |
| 5000 | 0.009311 | 614.19 | 2.8744 | 4289.4 | 245.23 | 0.010019 | $e$ |
| 10000 | 0.003543 | 574.47 | 2.7292 | 7234.0 | 227.27 | 0.009226 | $e$ |
| 20000 | 0.001283 | 495.51 | 2.5208 | $d$ | 339.38 | 0.002286 | $e$ |
| Temperature $=250{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | c | 667.45 | c | 0 | $d$ | 0 | $-0.0013222$ |
| 101.325 | 0.60410 | 667.03 | 3.4230 | 101.10 | 281.87 | 0.008094 | e |
| 500 | 0.12136 | 665.37 | 3.2336 | 494.63 | 280.56 | 0.008110 | $e$ |
| 1000 | 0.060010 | 663.26 | 3.1496 | 978.58 | 278.92 | 0.008128 | $e$ |
| 5000 | 0.010887 | 645.03 | 2.9364 | 4478.3 | 266.47 | 0.008174 | $\epsilon$ |
| 10000 | 0.004709 | 618.27 | 2.8174 | 7986.4 | 256.16 | 0.007672 | $e$ |
| 20000 | 0.001870 | 561.53 | 2.6536 | 12799. | 295.03 | 0.003884 | $e$ |
| Temperature $=300{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| 0 | c | 693.06 | c | 0 | $d$ | 0 | $-0.0010812$ |
| 101.325 | 0.66220 | 692.70 | 3.4698 | 101.16 | 294.87 | 0.006943 | $e$ |
| 500 | 0.13333 | 691.27 | 3.2809 | 495.99 | 293.94 | 0.006946 | $e$ |
| 1000 | 0.066123 | 689.45 | 3.1974 | 984.01 | 292.79 | 0.006948 | $e$ |
| 5000 | 0.012348 | 674.27 | 2.9898 | 4611.1 | 284.59 | 0.006876 | $e$ |
| 10000 | 0.005637 | 653.59 | 2.8819 | 8503.0 | 278.96 | 0.006448 | $e$ |
| 20000 | 0.002442 | 611.52 | 2.7451 | 14610. | 300.61 | 0.004191 | $e$ |

${ }^{a}$ Saturated vapor. ${ }^{b}$ Saturated liquid. ${ }^{\text {e }}$ Not applicable at these conditions. ${ }^{d}$ Property not calculated at these conditions. ${ }^{e}$ Same value as above. Independent of pressure.
where $B$ is in $\mathrm{m}^{3} / \mathrm{kg}$.

## Results

The above equations were evaluated by using a digltal computer. Table IV contains the values of the thermodynamic properties along the liquid-vapor saturation curve for selected temperatures. Table $V$ lists the properties of the compressed
liquid and superheated vapor for selected temperatures and pressures. The pressures in parentheses in Table V are at saturated conditions.

## Acknowledgment

The research for this work was done under the direction of Professor Joseph J. Martin. Without his guidance and autho-
ratative insight, this paper would not have been possible. Sadly, he lost his 3 -year battle against cancer before the text of this paper was wrtten. His courage and encouragement are greatly missed.

## Clossary

vapor pressure equation constant
$A_{1} \quad$ equation of state constants
a equation of state constant $a_{0} \quad$ density at the critical point, $\mathrm{g} / \mathrm{cm}^{3}$ $a_{1}$ saturated-liquld density equation constants
$B_{0.8} \quad$ equation of state parameter
$B_{1} \quad$ equation of state constants
$C$ vapor pressure equation constant
${ }^{\circ} \mathrm{C}$ degrees Celsius
$C_{1} \quad$ equation of state constants
$C_{p} \quad$ heat capacity at constant pressure, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$
$C_{v}$ heat capacity at constant volume, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$
$C_{p}$. Ideal-gas heat capacity at constant pressure, cal/ (g-mol-K)
$C_{8}{ }^{\prime} \quad$ saturated-liquld heat capacity, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$
c equation of state constant
D $\quad$ vapor pressure equation constant
E vapor pressure equation constant
F
$f$
G speciflc Gibbs free energy, $\mathrm{kJ} / \mathrm{kg}$
H specific enthalpy, $\mathrm{kJ} / \mathrm{kg}$
K
k
M
$m$
$n$
$P$
$P_{c} \quad$ critical pressure, kPa
$P_{r} \quad$ reduced pressure, $P / P_{c}$
$R \quad$ gas constant, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$ or $\mathrm{J} /(\mathrm{g}-\mathrm{mol} \cdot \mathrm{K})$
S specific entropy, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$
$S_{1.5 v_{0}} \quad$ equation of state parameter
$S_{1.4 p_{c}} \quad$ equation of state parameter
$S_{1.8 \rho_{\mathrm{s}}} \quad$ equation of state parameter
$T$
$T_{B} \quad$ Boyle temperature, $K$
$T_{c} \quad$ critical temperature
$T_{r}$ reduced temperature ( $T / T_{c}$ )
$t$ equation of state constant
$t P_{c}$ / equation of state constant
$\left(R T_{c} Z_{c}\right)$

| $U_{\text {a }}$ | velocity of sound, $\mathrm{m} / \mathrm{s}$ |
| :---: | :---: |
| V | specific volume, $\mathrm{m}^{3} / \mathrm{kg}$ |
| $V_{\text {c }}$ | critical specific volume, $\mathrm{m}^{3} / \mathrm{kg}$ |
| $V_{r}$ | reduced volume ( $\mathbf{V} / \mathbf{V}_{\mathrm{c}}$ ) |
| W, | compressed-liquid equation of state constants |
| $z$ | compressibility |
| $Z_{c}$ | critical compressibility |

## Greek Letters

$\alpha \quad$ ideal-gas heat capacity equation constant
$\beta \quad$ Ideal-gas heat capacity equation constant
$\gamma \quad$ Ideal-gas heat capaclty equation constant
$\delta \quad$ Ideal-gas heat capacity equation constant
$\mu \quad$ Joule-Thomson coefficient, $\mathrm{K} / \mathrm{kPa}$
$\rho^{\prime} \quad$ saturated-liquid density, $\mathrm{g} / \mathrm{cm}^{3}$
Subscripts
c critical point
sat, s saturated state
ref vapor at 1 atm and 239.18 K

## Superscripts

- Ideal state
$g$ vapor state
I liquid state
Regletry No. Chiorine, 7782-50-5.


## Literature CHed

(1) Zlegler, L. Chem.-Ing.-Tech. 1950, 22, 229-48.
(2) Kapoor, R. M.; Marth, J. J. "Thermodynamic Propertles of Chlorine"; Engineering Research Insttute, University of Mlchigan: Ann Arbor, MI, 1957.
(3) "Properties of Chlorine in SI unlts"; The Chlorine Institute: Now York, 1981.
(4) Ambrose, D.; Hall, D. J.; Lee, D. A.; Lewis, G. B.; Mash, C. J. J. Chem. Thermodyn. 1979, 11, 1089-94.
(5) Pellaton, M. J. Chim. Phys. Phys.-Chim. Blol. 1915, 13, 428-64.
(6) Glauque, W. F.; Powell, T. M. J. Am. Chem. Soc. 1939, 61, 1970-4.
(7) Lange, A. Z. Angew. Chem. 1900, 28, 683-6.
(8) Knitsch, R. Ann. Chem. 1900, $259,100$.
(9) Martin, J. J.; Stanford, T. G. AIChE Symp. Ser. 1974, 70, 1-13.
(10) Ross, A. S.; Masse, O. Can. J. Res. 1940, 168, 55-65
(11) Pler, M. Z. Phys. Chem., Abt. A 1008, 62, 385-419.
(12) Jacquerod, A.; Tourpalan, M. J. Chim. Phys. Phys .-Chim. Blol. 1913, 11, 3-28.
(13) Wagenbreth, H. PTB-Mitt. Feb 1989, 91-4.
(14) Douglas, A. E.; Mबller, C. K.; Stolcheff, B. P. Can. J. Phys. 1983, 41. 1174-92.
(15) Glushko, V. P.; Gurvich, L. V.; Bergman, G. A.; Velts, I. V.; Medvedev, V. A.; Khacthkuruzov, G. A.; Yungman, V. S. "Thermodynamic Propertles of Individual Substances", 3rd ed.; Nauka: Moscow, 1978; Vol. I.
(16) Martin, J. J. Chem. Eng. Prog. Symp. Ser. 1983, 59, 120-6.

Received for review October 24, 1983. Accepted June 4, 1984.


[^0]:    ${ }^{\dagger}$ Deceased.

    - Address correspondence to thls author c/O J. S. Schultz, Department of Chemical Engineering, Dow Bullding, University of Michigan, Ann Arber, MI 48109-0135.

